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spurious modes. This matrix is then rearranged into a banded matrix Ill. EIGENVALUE PROBLEM
and solvgd for the eigenmoc_ies using a;tandard EISPACK package. IRrylov-subspace-based methods are desirable to solve the eigen-
éSg,rittEtranelgenvalue problem is solved using the Chebyshev—Arnold %Iéllue problems for sparse matrices. Arnoldi and bi-Lanczos [10] are

In thi the t field s to obtai Hie two Krylov-subspace-based methods available to solve the asym-
_In this paper, we use the transverse-field components to obtain fg, ;. eigenvalue problem. The Arnoldi method is widely used because
finite-difference formulation for the dielectric-waveguide problem. In-

) ) . X S of its robust nature. However, for large matrices, it can be prohibitively
stead of using the Arnoldi algorithm, which performs explicit reorthog- . . . . :
Xpensive, as the iteration vectors are reorthogonalized after every it-

onalization at every iteration, we use the bi-Lanczos algorithm. Thé?ation. The bi-Lanczos method tends to be faster, as it does not per-

ra?ldtl;]((:ee:tg]:cg\c/)(renf?e jﬁt:ggﬂfcsﬁsg )Stzl?gstzzt?;gggézg r\ggfordetam"}%rm explicit reorthogonali_zation after each iter_ation. However, it is
’ not as stable as the Arnoldi method, as the iteration vectors tend to lose
their orthogonality. Different reorthogonalization schemes have been
Il. THEORY proposed to overcome this problem [11]. However, despite the loss of

ortaogonality, it was observed that the dominant eigenpairs can be re-

The transyerse compqnents of the vector wave eq.uatlor)s are Used from the tridiagonal matrix without performing any reorthogo-
as the equations governing the electromagnetic field in an mhomogl lization

neously filled waveguide. The space—time dependence of the electro-
magnetic field is assumed to bep[i(k.z — wt)]. The spatial deriva- 5 Bi.( anczos Algorithm

tives are approximated using finite differences to express the governingl_ ) ] ) ) )
equation in the form of a matrix equation. he bi-Lanczos algorithm is an extension of the Lanczos algorithm

for an asymmetric matrix. The original matri& of size N x N is

A Finite-Difference Formulation reduced into an asymmetric tridiagonal mafihof the form

From the source-free Maxwell's equations, the following discretized for mo 0 T 0

vector wave equations can be derived: )
/jl (D] Y2

H|
I

vV x :u'x_n]+(1/2)€ X Em — QQFmEm =0 (1) 0 A 0

VX em' VX Hng1/2) = Cpmp/nHmpa =0, () Do e T

P - . . L O 0 ,3]\/[—1 Qpf d
In the above equatiofy] x is the curl operator using forward difference

to approximate the derivatives whiléx represents the curl operatorwhereM is much smaller thaf¥. Approximations to the eigenmodes
using backward difference to approximate the derivatives. The nome@fithe original matrix can be obtained from the tridiagonal matrix and

clature used in this formulation is described in [9]. iteration vectors. The algorithm generates two sets of iteration vectors
Matching the transverse-field components in the vector wave eq¥s = [vi, ..., v;] andW; = [w, ..., w;], which satisfy the or-
tions [4] yields thogonality conditionw? - v; = 6,;. At each iteration, the relation
between the iteration vectors and matrices can be summarized as
- —1 - s = —1< s o [ —
Hm Ve X fi(172)Ve X B = Vaem Ve - émEm A-V; =V, - T+ [O, .- 0, ,ﬁivz'+1] (7
~ KB + KB AW =W T 40,00 ] )
. i = 7" H vy Uy W .
-0 (3) s ’Y +1
~ 1A as o _ ~ A nXn X7. XAT. nxi . X1
Fnl+(1/2)vs X F1znlv8 X Hm+(l/2) - vs/"m{k(l/@vs whereA €R ’V“ Wl €R ’ andTl eER .
/2 Hing(172) = K Hing ) + FHing o) B. Method |
=0. (4) To solve for the eigenpairs d., we carry out the bi-Lanczos iter-

ations to reduce it into a tridiagonal matfix. The eigenvalues of the
where the subscript represents the transverse component of the fietdidiagonal matrix are approximations to the eigenvalues of the matrix

vectors or the curl operator. L.. The right eigenvectorX of the matrix.. are related to the right
Equations (3) and (4) can be expressed in the form of an eigenvatigenvectord” of the tridiagonal matrix by the expressidn= V-Y.
problem as follows: The number of iterationd/ appears to scale a8N. Since each it-

eration involves two matrix-vector products, i.8,,- x andZ! - x, the

cost per iteration i$)(V). Thus, the cost foll] iterations becomes

O(N'3). If all the eigenvectors of thé/ x M tridiagonal matrix
Zn-H,-kH, =0. (6) are desired, the computational costi§A”) or O(N*). The total

storage requirement {4 +m +4)N +2M?, wherem is the number

Both matricesC. andZ,, are asymmetric, extremely sparse, and shaf¥ desired eigenmodes.

the same eigenvalues. Each eigenvector of these matrices corresponds

to the transverse components of the electric and magnetic fiefds Method Il

for a particular mode. Iterative solutions are desirable to solve suchThe method described in the previous section performs a full spec-

eigenvalue problems since they exploit the sparsity of the matiisal decomposition of the tridiagonal matrix and, hence, solvedfor

while limiting memory requirements and computational complexitgigenpairs of the matriX. . The main drawback in that method is the

Explicit storage of the matrix is avoided and it is accessed in the forstorage requirement, which scale€3sV'-®), making it inefficient for

of a matrix vector multiply. solving large problems. In many applications, typically just the first few

Z.-E,—kE, =0 (5)
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dominant modes are desired. In this section, we present a more efficit
method to solve for the dominant modes without the storage constrait ool > _ e
of the first method. N Ib e

In this technique, the iteration vectors are discarded as th 08f - er®
bi-Lanczos algorithm is carried out and only the tridiagonal matri
is generated. The next step is to solve for just the eigenvalues of t
tridiagonal matrix. Once the eigenvalues of the desired modes ha os6f
been found, they are then used in conjunction with the BiCG metth
to solve for the eigenvectors of the desired modes.;lfandx, are
the eigenvalue and the eigenvector of the desired eigenpair, then b oal

a=2b £= 2.25 €,
0.7+

EY
11

(Zg - Adi> X4 = 0. (9) 03r
. o2r —— Goell
The BiCG method can be used to solve for the null space of the m — FD-1 Ex,Ey
trix (L. — A4I). The right-hand side is setto a very small vector instea:  0-1f T D2ExE)
of zero for stability reasons when the BiCG iterations are carried oL o . l ‘ ,
The BICG iterations have to be carried out separately for each eige 0 05 1 1.5 2 25 3 35 4

pair. The storage requirements for this algorithm is§u&dV ) since the B —=

iteration vectors are discarded as they are generated. ! . . - . .
Fig. 1. Dispersion curves for the first nine propagating modes in a rectangular

waveguide.

IV. LocALIzED CURRENT SOURCE RESPONSE

The previous sections describe methods to solve for the modes 1 . .

a dielectric waveguide. An extension of these methods can be usec
. . . . . . . 09 y
solve for the field in a dielectric waveguide for a given localized cur B
rent source. The algorithm to solve for the fields is a generalization  ¢s-  Es
the spectral Lanczos decomposition method (SLDM) for asymmetr &
matrices. N O g,
In the presence of a localized current source, deat z = =', the 08y
transverse vector wave equation of the electric field can be written ET Ex31
o5 Eg
- s 02 = ~ ! o EY
L. E,+=—E, :sﬁ(z—z). (10) 0.4+ 12
(92’2 E
12
In the above expression, thedependence of the fields has beer o8-
suppressed and the vectoris defined as 0ot
S = V(i) 7'V, - T, — iQud, (12) 0.1F
€= 213 ¢,
The generalized formal solution for (10) in terms of matrix functions i 35 1 15 2 25 3 35
1 2
N _ ~1/2
B, = L7 et e, 12 _ N o . .
2 Fig. 2. Dispersion curves for the first eight propagating modes in a channel
waveguide.

By generalizing the SLDM method [12] for asymmetric matrices,
we can derive an expression for solving matrix functions as
V. NUMERICAL RESULTS

f(L:C) vi=V-Q-f(A)- Qe 13) In the first example, we solve for the modes in a rectangular di-
_ _ electric waveguide with an aspect ratio of two and relative permittivity
whereQ andA are the eigenpairs of the tridiagonal matrix created by. — 2 25. The solution space is discretized into an uniform ¥260
the bi-Lanczos iterations. The matik represents the iteration vectorsgrid and the problem is solved using method I, which solves for all the
generated during the bi-Lanczos iterations. modes. The same problem is then discretized into a much bigger grid
To evaluate (12) using (13), we first carry out the bi-Lanczos ite(480 x 240) and then solved for just the first two modes using method
ations and then perform a spectral decompositio’offhe number | Fig. 1 shows the dispersion curves obtained from both methods. The

of iterations is observed rempirically to Scale@. This makes the normalized propagation Constaﬁ; and the norma”zed frequen@
overall complexityO(N'-*). If we use (13) to compute the field in are defined as

the entirezy-plane, we need to store the entité x N matrix V,

which contains the iteration vectors. This makes the storage require- (;f — ;g) b 1/
ments scale a®(N'*). However, in most applications, we need to P=>—7 B=_—- [kf - ké] } (14)
solve for the field only at certain receiver locations. In that case, we (k? - kg) T

need to store just the elements corresponding to those receiver loca-

tions in each iteration vector. This reduces the size of the m&tri®m  Good agreement is seen between our results and those of Goell [2].

M x nr, wherenpr is the number of receiver locations. For values of In the following example, we analyze a channel waveguide with the
npr much less thanV, the overall storage requirement scales as justctangular waveguide embedded in a substrate. The solution space is
O(M?*) ~ O(N). discretized into an 13% 72 uniform grid. The dispersion curves for
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Fig. 3. Point source response for a square waveguide of3siz& 3\ at
different discretization levels.

the first few propagating modes of the channel waveguide are shown
in Fig. 2.
To test the accuracy of the localized current source response, we
compared our results for a homogeneously filled square waveguide A Low-Power-Consuming SOM for Wireless

with the analytic solution. A square waveguide of sk2e x 3\ was Communications
discretized at three different levels (10, 20, and 30 point#k point )
current source was placed at the center of the waveguide and the field M. Ghanevati and A. S. Daryoush

was computed at a distancelof from the source. Fig. 3 plots the field
along they-axis center cut for the different discretization levels and

. . - . . ._Abstract—This paper presents theoretical and experimental results of a
compares them with the analytic solution obtained using the dya%%-power-consuming hybrid push—pull self-oscillating mixer (SOM) cir-

Green’s function for a rectangular waveguide. The results are not Vgt at the UHF frequency band. The frequency-stable SOM circuit is de-
good when just ten points per wavelength are used and get worse asifed and fabricated using matched-pair Si bipolar junction transistors
wave is propagated down the waveguide. However, at a grid densityaﬁfi high-Q resonators, where measured phase noise of this free-running

; ; ; valtage-controlled oscillator is—101.2 dBc/Hz at 100-kHz offset. A 20-dB
g(())IEt(i);)rgs per wavelength, excellentagreement is seen with the anal%g)l—sconversion gain, a compression dynamic range (CDR) of 65 dBMHz,

and a spurious-free dynamic range of 50 dB MHz2/2 are also measured
for the mixer portion of this SOM. Moreover, a down-conversion gain of

VI. CONCLUSIONS ~ —2 dB with a CDR of 100 dB- MHz is also measured.

. . Index Terms—Low phase-noise oscillator, nonlinear modeling, push—pull
We have developed an algorithm to solve the eigenvalue probl%rr‘zap”ﬁer self-oscillating mixer, Si BJT, UHF.

for the sparse matrix generated by the finite-difference formulation.

The use of bi-Lanczos algorithm allows this method to be computa-

tionally competitive with other approximate methods, while the use of |. INTRODUCTION

the finite-difference formulation makes this method versatile enothLow-power-consuming front-end electronic circuits are important

to handle complicated waveguide structures. We have also descr'gf‘éjments in future mobile communication systems [1]. Self-oscillating

a new technique that reduces the storage requirements ¥ and, i er (SOM) circuits that combine both local oscillators (LOs) and
thus, allows us to solve problems with several 100000 unknowns. W&, o functions have found interests in RF transceivers since they ex-

have also described a scheme to solve for the localized current SO 5 smaller size and potentially a lower overall power consumption

response using an extension of the SLDM technique. [2]-[7] as opposed to their discrete counter parts. A low-power-con-
suming SOM design topology based on the push—pull concept was first
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