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An Efficient Krylov-Subspace-Based Algorithm to Solve
the Dielectric-Waveguide Problem

Kaladhar Radhakrishnan and Weng Cho Chew

Abstract—An efficient scheme based on the bi-Lanczos algorithm
has been developed for analysis of the dielectric-waveguide problem. A
two-dimensional finite-difference scheme in the frequency domain is used
to discretize the waveguide cross section. The resulting sparse eigenvalue
problem is solved efficiently using the bi-Lanczos algorithm. Apart from
solving the modes of the dielectric waveguide, a scheme to solve for the
fields in the presence of a localized source is also described. Numerical
results are also included to confirm the validity of the method.

Index Terms—Bi-Lanczos algorithm, finite difference, optical wave-
guides.

I. INTRODUCTION

In recent years, advances in optical waveguide technology have es-
tablished the need for numerical algorithms to carry out the modal anal-
ysis for dielectric waveguides. Dielectric waveguides used in integrated
optics consist primarily of rectangular dielectric cores. Since waveg-
uides of rectangular cross section have no closed-form solution, the
eigenmodes of the waveguide have to be found numerically. Several
numerical methods are available to solve for the modes of dielectric
waveguides. The dielectric waveguides were first analyzed using the
mode-matching technique [1]. Goell [2] analyzed the same problem by
expanding the field using circular harmonics. More recently, with the
increase in the computational power of the computers, finite-element
[3], [4] and finite-difference [5]–[8] techniques were used to solve the
dielectric-waveguide problem. Schweiget al. [5] used theEz � Hz

formulation to solve the problem. However, this formulation suffered
from the occurrence of spurious modes. To avoid the spurious modes,
Bierwirth et al. [6] used the transverse-field components to formulate
the problem. This results in a sparse asymmetric matrix that is free of
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spurious modes. This matrix is then rearranged into a banded matrix
and solved for the eigenmodes using a standard EISPACK package. In
[8], the eigenvalue problem is solved using the Chebyshev–Arnoldi al-
gorithm.

In this paper, we use the transverse-field components to obtain the
finite-difference formulation for the dielectric-waveguide problem. In-
stead of using the Arnoldi algorithm, which performs explicit reorthog-
onalization at every iteration, we use the bi-Lanczos algorithm. This
reduces the computational complexity of the algorithm while retaining
all the attractive features of a Krylov-subspace-based method.

II. THEORY

The transverse components of the vector wave equations are used
as the equations governing the electromagnetic field in an inhomoge-
neously filled waveguide. The space–time dependence of the electro-
magnetic field is assumed to beexp[i(kzz � !t)]. The spatial deriva-
tives are approximated using finite differences to express the governing
equation in the form of a matrix equation.

A. Finite-Difference Formulation

From the source-free Maxwell’s equations, the following discretized
vector wave equations can be derived:

r̂ � �
�1
m+(1=2)

~r� ~Em � 
2
�m ~Em =0 (1)

~r� �
�1
m
r̂ � Ĥ

m+(1=2) � 
2
�
m+(1=2)Ĥm+(1=2) =0: (2)

In the above equation,~r� is the curl operator using forward difference
to approximate the derivatives whilêr� represents the curl operator
using backward difference to approximate the derivatives. The nomen-
clature used in this formulation is described in [9].

Matching the transverse-field components in the vector wave equa-
tions [4] yields
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where the subscripts represents the transverse component of the field
vectors or the curl operator.

Equations (3) and (4) can be expressed in the form of an eigenvalue
problem as follows:

Le � ~Es � k
2
z
~Es =0 (5)

Lh � Ĥs � k
2
zĤs =0: (6)

Both matricesLe andLh are asymmetric, extremely sparse, and share
the same eigenvalues. Each eigenvector of these matrices corresponds
to the transverse components of the electric and magnetic fields
for a particular mode. Iterative solutions are desirable to solve such
eigenvalue problems since they exploit the sparsity of the matrix
while limiting memory requirements and computational complexity.
Explicit storage of the matrix is avoided and it is accessed in the form
of a matrix vector multiply.

III. EIGENVALUE PROBLEM

Krylov-subspace-based methods are desirable to solve the eigen-
value problems for sparse matrices. Arnoldi and bi-Lanczos [10] are
the two Krylov-subspace-based methods available to solve the asym-
metric eigenvalue problem. The Arnoldi method is widely used because
of its robust nature. However, for large matrices, it can be prohibitively
expensive, as the iteration vectors are reorthogonalized after every it-
eration. The bi-Lanczos method tends to be faster, as it does not per-
form explicit reorthogonalization after each iteration. However, it is
not as stable as the Arnoldi method, as the iteration vectors tend to lose
their orthogonality. Different reorthogonalization schemes have been
proposed to overcome this problem [11]. However, despite the loss of
orthogonality, it was observed that the dominant eigenpairs can be re-
stored from the tridiagonal matrix without performing any reorthogo-
nalization.

A. Bi-Lanczos Algorithm

The bi-Lanczos algorithm is an extension of the Lanczos algorithm
for an asymmetric matrix. The original matrixAAA of sizeN � N is
reduced into an asymmetric tridiagonal matrixT of the form

T =

�1 
1 0 . . . 0

�1 �2 
2
. . .

...

0 �2
. . .

. . . 0
...

. . .
. . .

. . . 
M�1

0 . . . 0 �M�1 �M

whereM is much smaller thanN . Approximations to the eigenmodes
of the original matrix can be obtained from the tridiagonal matrix and
iteration vectors. The algorithm generates two sets of iteration vectors
Vi = [v1; . . . ; vi] andWi = [w1; . . . ; wi], which satisfy the or-
thogonality conditionwT

i � vi = �ij . At each iteration, the relation
between the iteration vectors and matrices can be summarized as

A �Vi =Vi �Ti + 0; . . . ; 0; �ivi+1 (7)

A
T �Wi =Wi �TT

i + 0; . . . ; 0; 
iwi+1 : (8)

whereA 2 n�n,Vi;Wi 2 n�i, andTi 2 i�i.

B. Method I

To solve for the eigenpairs ofLe, we carry out the bi-Lanczos iter-
ations to reduce it into a tridiagonal matrixT. The eigenvalues of the
tridiagonal matrix are approximations to the eigenvalues of the matrix
Le. The right eigenvectorsX of the matrixLe are related to the right
eigenvectorsY of the tridiagonal matrix by the expressionX = V �Y.

The number of iterationsM appears to scale as
p
N . Since each it-

eration involves two matrix-vector products, i.e.,Le �x andLTe �x, the
cost per iteration isO(N). Thus, the cost forM iterations becomes
O(N1:5). If all the eigenvectors of theM � M tridiagonal matrix
are desired, the computational cost isO(M3) or O(N1:5). The total
storage requirement is(M+m+4)N+2M2, wherem is the number
of desired eigenmodes.

C. Method II

The method described in the previous section performs a full spec-
tral decomposition of the tridiagonal matrix and, hence, solves forM

eigenpairs of the matrixLe. The main drawback in that method is the
storage requirement, which scales asO(N1:5), making it inefficient for
solving large problems. In many applications, typically just the first few
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dominant modes are desired. In this section, we present a more efficient
method to solve for the dominant modes without the storage constraints
of the first method.

In this technique, the iteration vectors are discarded as the
bi-Lanczos algorithm is carried out and only the tridiagonal matrix
is generated. The next step is to solve for just the eigenvalues of the
tridiagonal matrix. Once the eigenvalues of the desired modes have
been found, they are then used in conjunction with the BiCG method
to solve for the eigenvectors of the desired modes. If�d andxd are
the eigenvalue and the eigenvector of the desired eigenpair, then

Le � �dI � xd = 0: (9)

The BiCG method can be used to solve for the null space of the ma-
trix (Le��dI). The right-hand side is set to a very small vector instead
of zero for stability reasons when the BiCG iterations are carried out.
The BiCG iterations have to be carried out separately for each eigen-
pair. The storage requirements for this algorithm is justO(N) since the
iteration vectors are discarded as they are generated.

IV. L OCALIZED CURRENT SOURCERESPONSE

The previous sections describe methods to solve for the modes in
a dielectric waveguide. An extension of these methods can be used to
solve for the field in a dielectric waveguide for a given localized cur-
rent source. The algorithm to solve for the fields is a generalization of
the spectral Lanczos decomposition method (SLDM) for asymmetric
matrices.

In the presence of a localized current source, i.e.,~J at z = z0, the
transverse vector wave equation of the electric field can be written as

Le � ~Es +
@2

@z2
~Es = ~se� z � z

0
: (10)

In the above expression, thez-dependence of the fields has been
suppressed and the vectorse is defined as

~se = ~rs(i
�)
�1r̂s � ~Js � i
�~Js (11)

The generalized formal solution for (10) in terms of matrix functions is

~Es =
1

2i
L�1=2
e � eiL jz�z j � ~se (12)

By generalizing the SLDM method [12] for asymmetric matrices,
we can derive an expression for solving matrix functions as

f Le � v1 = V �Q � f(�) �Q�1 � e1: (13)

whereQ and� are the eigenpairs of the tridiagonal matrix created by
the bi-Lanczos iterations. The matrixV represents the iteration vectors
generated during the bi-Lanczos iterations.

To evaluate (12) using (13), we first carry out the bi-Lanczos iter-
ations and then perform a spectral decomposition ofT. The number
of iterations is observed empirically to scale as

p
N . This makes the

overall complexityO(N1:5). If we use (13) to compute the field in
the entirexy-plane, we need to store the entireM � N matrix V,
which contains the iteration vectors. This makes the storage require-
ments scale asO(N1:5). However, in most applications, we need to
solve for the field only at certain receiver locations. In that case, we
need to store just the elements corresponding to those receiver loca-
tions in each iteration vector. This reduces the size of the matrixV to
M � nR, wherenR is the number of receiver locations. For values of
nR much less thanN , the overall storage requirement scales as just
O(M2) � O(N).

Fig. 1. Dispersion curves for the first nine propagating modes in a rectangular
waveguide.

Fig. 2. Dispersion curves for the first eight propagating modes in a channel
waveguide.

V. NUMERICAL RESULTS

In the first example, we solve for the modes in a rectangular di-
electric waveguide with an aspect ratio of two and relative permittivity
�r = 2:25. The solution space is discretized into an uniform 120� 60
grid and the problem is solved using method I, which solves for all the
modes. The same problem is then discretized into a much bigger grid
(480� 240) and then solved for just the first two modes using method
II. Fig. 1 shows the dispersion curves obtained from both methods. The
normalized propagation constantPs and the normalized frequencyB
are defined as

Ps =
k2z � k20

k2
1
� k2

0

B =
b

�
k
2

1 � k
2

0

1=2

: (14)

Good agreement is seen between our results and those of Goell [2].
In the following example, we analyze a channel waveguide with the

rectangular waveguide embedded in a substrate. The solution space is
discretized into an 135� 72 uniform grid. The dispersion curves for
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Fig. 3. Point source response for a square waveguide of size3� � 3� at
different discretization levels.

the first few propagating modes of the channel waveguide are shown
in Fig. 2.

To test the accuracy of the localized current source response, we
compared our results for a homogeneously filled square waveguide
with the analytic solution. A square waveguide of size3� � 3� was
discretized at three different levels (10, 20, and 30 points/�). A point
current source was placed at the center of the waveguide and the field
was computed at a distance of1� from the source. Fig. 3 plots the field
along they-axis center cut for the different discretization levels and
compares them with the analytic solution obtained using the dyadic
Green’s function for a rectangular waveguide. The results are not very
good when just ten points per wavelength are used and get worse as the
wave is propagated down the waveguide. However, at a grid density of
30 points per wavelength, excellent agreement is seen with the analytic
solution.

VI. CONCLUSIONS

We have developed an algorithm to solve the eigenvalue problem
for the sparse matrix generated by the finite-difference formulation.
The use of bi-Lanczos algorithm allows this method to be computa-
tionally competitive with other approximate methods, while the use of
the finite-difference formulation makes this method versatile enough
to handle complicated waveguide structures. We have also described
a new technique that reduces the storage requirements toO(N) and,
thus, allows us to solve problems with several 100 000 unknowns. We
have also described a scheme to solve for the localized current source
response using an extension of the SLDM technique.
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A Low-Power-Consuming SOM for Wireless
Communications

M. Ghanevati and A. S. Daryoush

Abstract—This paper presents theoretical and experimental results of a
low-power-consuming hybrid push–pull self-oscillating mixer (SOM) cir-
cuit at the UHF frequency band. The frequency-stable SOM circuit is de-
signed and fabricated using matched-pair Si bipolar junction transistors
and high- resonators, where measured phase noise of this free-running
voltage-controlled oscillator is 101.2 dBc/Hz at 100-kHz offset. A 20-dB
up-conversion gain, a compression dynamic range (CDR) of 65 dBMHz,
and a spurious-free dynamic range of 50 dB MHz are also measured
for the mixer portion of this SOM. Moreover, a down-conversion gain of

2 dB with a CDR of 100 dB MHz is also measured.

Index Terms—Low phase-noise oscillator, nonlinear modeling, push–pull
amplifier, self-oscillating mixer, Si BJT, UHF.

I. INTRODUCTION

Low-power-consuming front-end electronic circuits are important
elements in future mobile communication systems [1]. Self-oscillating
mixer (SOM) circuits that combine both local oscillators (LOs) and
mixer functions have found interests in RF transceivers since they ex-
hibit a smaller size and potentially a lower overall power consumption
[2]–[7] as opposed to their discrete counter parts. A low-power-con-
suming SOM design topology based on the push–pull concept was first
demonstrated atX-band [7] and was later modified and extended to the
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